- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0003000003000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Xue, Yexiang (6)
-
Zhang, Maosen (6)
-
Jiang, Nan (4)
-
van Hoeve, Willem-Jan (3)
-
El-Azab, Anter (2)
-
Fan, Cuncai (2)
-
Nasim, Md (2)
-
Zhang, Xinghang (2)
-
Li, Lei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jiang, Nan; Zhang, Maosen; van Hoeve, Willem-Jan; Xue, Yexiang (, Journal of machine learning research)
-
Jiang, Nan; Zhang, Maosen; van Hoeve, Willem-Jan; Xue, Yexiang (, Journal of machine learning research)Many real-world structured prediction problems need machine learning to capture data distribution and constraint reasoning to ensure structure validity. Nevertheless, constrained structured prediction is still limited in real-world applications because of the lack of tools to bridge constraint satisfaction and machine learning. In this paper, we propose COnstraint REasoning embedded Structured Prediction (Core-Sp), a scalable constraint reasoning and machine learning integrated approach for learning over structured domains. We propose to embed decision diagrams, a popular constraint reasoning tool, as a fully-differentiable module into deep neural networks for structured prediction. We also propose an iterative search algorithm to automate the searching process of the best Core-Sp structure. We evaluate Core-Sp on three applications: vehicle dispatching service planning, if-then program synthesis, and text2SQL generation. The proposed Core-Sp module demonstrates superior performance over state-of-the-art approaches in all three applications. The structures generated with Core-Sp satisfy 100% of the constraints when using exact decision diagrams. In addition, Core-Sp boosts learning performance by reducing the modeling space via constraint satisfaction.more » « less
-
Xue, Yexiang; Nasim, Md; Zhang, Maosen; Fan, Cuncai; Zhang, Xinghang; El-Azab, Anter (, Proceedings of 2021 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD))
-
Xue, Yexiang; Nasim, Md; Zhang, Maosen; Fan, Cuncai; Zhang, Xinghang; El-Azab, Anter (, Proceedings of 2021 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD))null (Ed.)
-
Zhang, Maosen; Jiang, Nan; Li, Lei; Xue, Yexiang (, Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Findings)null (Ed.)
An official website of the United States government

Full Text Available